Office of Tax Analysis

U.S. Treasury Department
Washington, D.C. 20220
Issued: September 1976

ESTIMATION OF A SIMULTANEOUS SYSTEM OF
EQUATIONS WHEN THE SAMPLE IS UNDERSIZED

K.R. Kadiyala
Purdue University
James R. Nunns
U.S. Treasury Department

OTA Paper 14 August 1976






II.

III.

Iv.

TABLE OF CONTENTS

Introduction L] . L] L] L] . L] L] L] L] L] L] L] .
The Problem . o o o ¢ o o o o o o o o @
Alternative Approaches to the Problem .

A Proposed Class of Estimators . . . «

Estimation of Klein's Model I - An Illustration






I. INTRODUCTION

In most large and many medium-sized econometric models, the number
of predetermined variables exceeds the number of observations on each
variable. Estimation procedures such as two-stage least squares and
other k-class (k>0) procedures, as well as three-stage least squares and
certain other full-information procedures are therefore inapplicable.

In this paper, a class of modified two-stage least squares estimators
is derived which exhibits several desirable properties in comparison to
alternative estimators which have been proposed for models with under-

sized samples.
II. THE PROBLEM

The jth structural equation of a linear simultaneous equation system
may be written as:

vy = Yyvy tXBy @

or more conveniently as:

=26, +¢E (2)

Y57 %5%3 7 =3
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where Zj (Yj : Xj), GJ (yj Bj), yj is the nxl vector of observations

on the jth dependent variable, Yj is the nxL, matrix of observations on the

h]
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jointly dependent variables which are explanatory in the jth equation,
Xj is the nij matrix of observations on the predetermined variables
entering the jth equation, Y4 and Bj are parameter vectors to be estimated,
and Ej is an nx1l vector of disturbances. The system contains L jointly
dependent variables, and K (>Kj) predetermined variables; X is the nxK
matrix of observations on all predetermined variables in the system. It
is assumed throughout the paper that the predetermined variables are

"fixed", Ej has a zero mean and covariance matrix cjjI (0 < cjj' < ®),

the jth equation is identified, and the rank of X'Zj is Lj+K_j which
requires min(K, n) > Lj+Kj'
Multiplying equation (2) by X' gives:
X'y, =X"28. +X'e. . 3
Y3 £3 &5 (3

The transformed disturbance vector x'gj has mean zero and covariance
matrix oij'X. Assuming X has rank K (which requires n2K), the two-stage

least squares estimator of éj, Gj, is derived from (3) by applying

Aitken's theorem, giving:

§; = (2'Ez,)"1z'Ey, |

j = (23825 725Ey, (4)
where E = X(X'X)_IX'. When the rank of X is less than K, X'X is singular
and the two-stage least squares estimator (as well as all other estimators

which depend on the inverse of X'X) fails to exist. The rank of X is

always less than K when n<K, i.e., when the sample is undersized.
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III. ALTERNATIVE APPROACHES TO THE PROBLEM

A number of estimation procedures have been proposed that do not
rely on the inverse of X'X, and are therefore at least potentially
applicable when the sample is undersized. These procedures will only be
discussed briefly here; more extensive discussions may be found in
Theil [9] and Dutta and Lyttkens [1]. Our primary interest is in those
procedures which are truly "limited-information" - requiring only
specification of the jth equation and the list of predetermined variables
occurring in the system., Other procedures, while usually more efficient,
have the undesirable property of requiring a more detailed knowledge of
the entire system. Estimation of the jth equation is therefore sensitive
to misspecification in the remainder of the system.

Among the limited information procedures, the following three are
widely known and illustrate the difficulties of estimation when the

sample is undersized.

1. Kloek and Mennes [3] suggested replacing X with T = (Xj : P) where P
is a matrix of principal components of some linear combination of some or

all of the columns ova. This leads to the estimator:

*—

%5

' teey=lmrory=1o0 vy =Lt
(ZjT(T DT Zj) ZjT(T T) T yj . (5)

A major disadvantage of this procedure is that the size of P, the columns
of X from which the full set of principal components is derived, and the

*
normalization chosen are all arbitrary. Thus, Sj may be highly sensitive
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to the P matrix used in its estimation. A lesser disadvantage is that
the procedure requires considerably greater computational effort than
the two-stage least squares procedure. Further, as is the case with all
other limited-information procedures which we are aware of, short of
specifying and estimating the‘entire system no estimates of the reduced
form coefficients is possible using this procedure. Thus, projections of
the dependent variables included in Yj cannot be obtained simply on the
basis of projections of the predetermined variables.

From Takeuchi's results [7] it is known that in certain cases,
if P is of rank r then the even moments of order less than r - Lj + 3

of 6; exist, but little else is known about its small sample properties.

It has the desirable large sample property of consistency.

2. Applying a generalization of Aitken's theorem to equation (3),

Swamy and Holmes [6] and Fischer and Wadycki [2] obtain the estimator:

R
aj (sz zj) zijy (6)

3

where E- = X(X'X) X' and (X'X)™ is any (weak) generalized inverse of X'X.

Normally when the sample is undersized, the rank of X is n in which case

- - -1
X(X'X) X = I so that Gj = (ZSZj) Z:'jyj s the ordinary least squares

estimator for Gj. Since 63 becomes the two-stage least squares estimator
when n>K (assuming that the rank of X is then K), it does not share the
property of inconsistency with the ordinary least squares estimator.

Consistency, however, is a large sample property; it is the small sampie

properties of 65'which are relevant in the present context. Mariano [4]
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has shown that in the general case, the even moments of order less than
n—(Kj+Lj)+1 of the ordinary least squares estimator exist. However,

Sawa [5] has shown that, for an equation with Lj=1, the ordinary least
squares estimator has a lower mean square error than other k-class

(0 <k <1) estimators only in rather specialized circumstances. Reduced
form parameters cannot be directly computed following this procedure. An

advantage of the procedure, however, is its computational simplicity.

3. Partitioning X as (Xj ¢ ij), where ij is the nx(K—Kj) matrix of ob-

servations on the predetermined variables excluded from the jth equation,

equation (3) may be writtent

X'y. X'26 . + X}
2 B O I i 3Y
X! X'z6. + X'¢ )
X.\y. .
373 R I A
Theil's Djrclags-estimator (dg) is bésed on constrained estimation from
the second subset of (3'), using some positive definite matrix o..D. in

3373
place of ojjigij>which is singular when n< (KéKjl; see Theil [9]. The

constraint, from the systematic part of the first subset of (3'), is

T = 1] * = s -1-.‘ % H
ijj ijjdj. Defining Cj Xij Xj "dj is obtained by solving
z!'Cc 2, i z'X a* z'c
I A I B I 3753 )
' - B '
ijj :-0 Aj ijj

where A, is a vector of Lagrangian multipliers. In practice, Theil

3
suggests that Dj be diagonal, with diagonal elements taken from the

diagonal of X'X
g 35

. There are several disadvantages to the Dj—class
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estimators. The choice of Dj is arbitrary and d; is sensitive to this
choice; Theil's suggested choice disposes of a fair amount of information
contained in X'X. The reduced form is explicitly bypassed. The com-
putational burden is roughly the same as for the two-stage least squares
estimator. The small sample properties of d; are unknown; Theil shows
that it is a consistent estimator, but since its asymptotic covariance

matrix differs from that of two-stage least squares it is not efficient

(in the limited information sense).
IV. A PROPOSED CLASS OF ESTIMATORS

In partitioned form, we have:

XX, ! X'X

x'x= |3 33 . (8)
X'X 3 X'X.
3% 373

Since X'X, is positive definite by assumption, if we "disturb" X!X

i3 373
slightly by adding to it any (symmetric) positive definite matrix Aj

(so that in Theil's notation, Dj = %ij + Aj) , a comparison of the

quadratic forms associated with X'X and

X'X, ¢ X'X.

R (9
X:X. ¢t D
33 J

shows that Vj is positive definite.

The partitioned inverse of Vj may be written:

-1 1

-1 . : 4 - -
X!'X., - X'C.X : -(X'X, - X'0.X X'X.D. 0
V-l.= ( i Jcad-) : (-J 3 i3 j) 37373 (10)
3 zip ¥y lze ' -1 ' e 7 YL
-(D, - X'E.X.,) "X'X,(X'X : D. - X'E X,
( h] 373 J) k| J( h| j) ( J j 3 J)
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li'

where Ej = Xj(X'X )-1X3 and (retaining Theil's notation) Cj = ijD; 5

33
Using (10), we define:

= R Ty _y! =14 - X X'r ¥ -1z, - :
Nj XVj X [Xj(Xij XjCij) Xj][I Cj] + [X.j(Dj XjEij) Xj][I Ej]. 1)

It follows immediately from equation (11) that Nj is symmetric and that
Nij = Xj; therefore XSNj = XS . The estimator for Gj based on Nj
@'j) , 1s obtained by simply replacing E with Nj in equation (4), giving:

= ' -1,
(szjzj) Zijyj . (12)

°3
The estimator gj has several desirable properties. It is a true
limi;ed—information estimator. In terms of computational difficulty, it
is equivalent to tWo—stage least squares. Under the usual assumptions
(see, for example, Theil [8, Chapter 10]), it is also asymptotically
equivalent to two-stage least squares, assuming plim n-lAj = 0 since then
plim n-lvj = plim n~1x'x. ‘Thus, gj is consistent, asymptotically efficient

(in the limited information sense), and asymptotically normally distributed

with mean.&j and a covariance matrix which is consistently estimated by:

p /Al -1 ] [ -1 ,

sjj(szjzj) ZijNij(ZijZj) @3)
where

Sie= 1 Ay, -2 )" (y, - 28.) (14)

i3 ———-—-——n_Kj_Lj 3 303 i

is, by the above, a consistent estimator for °jj°
Further, a consistent (but biased) estimate of the reduced form

parameters of the system () is obtained from:



In=v, X'ty . (15)

Let Hj represent the columns of ﬁ corresponding to Yj' Note that

~ ~ -~

XI., = N.Y, =Y, , so N.Z, = (Y, ! X.,). Given projections of the pre-
j Y5 j %5 (¥4 J) proj P
determined variables of the system, xP = (Xp $ ig ) , we may project
Y, from
-
YP = xPn 16)

3

B
i3

is defined for any suitable choice

and then, defining Z? (Yp

While the proposed estimator §

X?), project Y from Z

k|
of Aj , in practice we suggest specifying Aj = al where 0 <a <o,
Simplicity is, of course, a major advantage of this specification. In
addition, our (quite limited) experience with this specification,
reported below, suggests that the elements of gj are reasonably stable
over fairly large ranges of a. Our current research is directed in

part toward finding the "optimal" value of a for a given equation. A

second direction for research is the small sample properties of Gj .
V. ESTIMATION OF KLEIN'S MODEL I - AN ILLUSTRATION

Although the sample underlying Klein's Model I is not undersized
(n=21, K=8), it has the advantage that it has been estimated using all
of the alternative procedures previously discussed, including two-stage least
squares, so that a numerical comparison of the various procedures is

possiblé. The model consists of three behavioral equations:
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C, = V1P, * va(W, + W) +81P,_3 +Bo + E, a7
- ] '

I, = YiPt + BiPt_l +35Kt_1 +B(') +E] (18)
— 11} " ”n - " 11]

We = vX, + let-l + 85 (t-1931) +Bg + EY 19)

where t is measured in calendar years, C is consumption, P profits,

W the private wage bill, W' the governmment wage bill, I net investment,
K capital stock at the end of the year, and X the output of the private
sector. The six endogenous variables are C, P, I, W, X and K; the model
is closed by three definitional equations., The eight predetermined
variables consist of ;hree lagged endogenous variables, P-l’ K—l’ X_1
and t, W', 1 (the constant), T (business taxes), and G (government nonwage
expenditure). In (17), WW' is considered one endogenous variable., The
underlying data is available in Theil [8, page 456].

Point estimates of coefficients, their asymptotic standard errors,
and estimated variances are shown in the accompanying table. For the
procedure proposed in this paper, coefficient point estimates are from
equation (12), standard errors are square roots of the diagonals from
equation (13), variances are from equation (14), and we have specified
A.j = al.

Using the full sample (n=21), the proposed estimator with a=1 gives
results which are virtually identical to two-stage least squares. This
result is to be expected, since when n>K, the proposed procedure
converges to the two-stage least squares procedure as a*0. With a=21,

coefficients on the highly correlated variables P and P_. in equations (17)

1
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and (18) and X and X—l in equation (19) diverge somewhat from the two-
stage least squares estimates. Standard errors, however, are quite similar.
For Theil's Dj—class procedure, standard errors tend to be larger in all
equations, and the divergence of coefficients on P and P—l in equations
(17) and (18) from the two-stage least squares estimates is greater than
for the proposed procedure, but there is no divergence for any coefficient
in equation (19). The Kloek and Mennes principal components procedure
performs quite well in equation (18), but the coefficient of P in
equation (17) and of X and X_, in equation (19) diverge somewhat from the
two-stage least squares estimates. These results, of course, are no more
than suggestive of the relative merits of the alternative procedures.

To illustrate the proposed procedure when the sample is
undersized, Klein's Model I was estimated for n=7, where the observations
are those for 1922, 25, 28, 31, 34, 37 and 1940. These years are fairly
representative of the full 21 year observation period. Note that when
n<K, as a*0 the proposed procedure converges to ordinary least squares,
which normally coincides with the procedure of Swamy and Holmes [6]

and Fischer and Wadycki [2].
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